Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis
نویسنده
چکیده
In performing a Bayesian analysis of astronomical data, two difficult problems often emerge. First, in estimating the parameters of some model for the data, the resulting posterior distribution may be multimodal or exhibit pronounced (curving) degeneracies, which can cause problems for traditional Markov Chain Monte Carlo (MCMC) sampling methods. Second, in selecting between a set of competing models, calculation of the Bayesian evidence for each model is computationally expensive using existing methods such as thermodynamic integration. The nested sampling method introduced by Skilling (2004) has greatly reduced the computational expense of calculating evidences and also produces posterior inferences as a by-product. This method has been applied successfully in cosmological applications by Mukherjee et al. (2006), but their implementation was efficient only for unimodal distributions without pronounced degeneracies. Shaw et al. (2007) recently introduced a clustered nested sampling method which is significantly more efficient in sampling from multimodal posteriors and also determines the expectation and variance of the final evidence from a single run of the algorithm, hence providing a further increase in efficiency. In this paper, we build on the work of Shaw et al. and present two new methods for sampling and evidence evaluation from distributions that may contain multiple modes and significant degeneracies; we also present an even more efficient technique for estimating the uncertainty on the evaluated evidence. These methods lead to a further substantial improvement in sampling efficiency and robustness, and are applied to two toy problems to demonstrate the accuracy and economy of the evidence calculation and parameter estimation. Finally, we discuss the use of these methods in performing Bayesian object detection in astronomical datasets, and show that they significantly outperform existing MCMC techniques. An implementation of our methods will be publically released shortly.
منابع مشابه
MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics
We present further development and the first public release of our multimodal nested sampling algorithm, called MULTINEST. This Bayesian inference tool calculates the evidence, with an associated error estimate, and produces posterior samples from distributions that may contain multiple modes and pronounced (curving) degeneracies in high dimensions. The developments presented here lead to furth...
متن کاملمقایسه روش شناسی تحلیل مورد- شاهدی لانه گزیده و همگروهی بر روی دادههای مربوط به بیماری سل شهرستان: یک تجربه
Background and objective: The nested case-control study has become popular as an efficient alternative to the full-cohort design. This study compares the results of a nested case-control analysis approach with the full cohort analysis. Methods: A cohort of 276 subjects (new cases from a TB registry) was used for this study. Cox Regression model was used for the full cohort analysis. In orde...
متن کاملAdvances in Markov chain Monte Carlo methods
Probability distributions over many variables occur frequently in Bayesian inference, statistical physics and simulation studies. Samples from distributions give insight into their typical behavior and can allow approximation of any quantity of interest, such as expectations or normalizing constants. Markov chain Monte Carlo (MCMC), introduced by Metropolis et al. (1953), allows sampling from d...
متن کاملParallel Markov Chain Monte Carlo via Spectral Clustering
As it has become common to use many computer cores in routine applications, finding good ways to parallelize popular algorithms has become increasingly important. In this paper, we present a parallelization scheme for Markov chain Monte Carlo (MCMC) methods based on spectral clustering of the underlying state space, generalizing earlier work on parallelization of MCMC methods by state space par...
متن کاملComparing MCMC and INLA for disease mapping with Bayesian hierarchical models
Introduction Bayesian hierarchical models with random effects are one of the most widely used methods in modern disease mapping, as a superior alternative to standardized ratios. These models are traditionally fitted through Markov Chain Monte Carlo sampling (MCMC). Due to the nature of the hierarchical models and random effects, the convergence of MCMC is very slow and unpredictable. Recently,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008